Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Talanta ; 274: 125993, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38579422

RESUMO

Current potentiometric Cu2+ sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu2+-SC-ISE based on Cu-Mn oxide (Cu1.4Mn1.6O4) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu2+-SC-ISEs. Specifically, ion recognition and signal transduction have been achieved synchronously by an ion-coupled-electron transfer of crystal ion transport and electron transfer of Mn4+/3+ in Cu1.4Mn1.6O4. The proposed Cu1.4Mn1.6O4 electrode discloses comparable sensitivity, response time, high selectivity and stability compared with present ISM-based potentiometric Cu2+ sensors. In addition, the Cu1.4Mn1.6O4 electrode also exhibits near Nernstian responses toward Cu2+ in natural water background. This work emphasizes an ISM-free concept and presents a scheme for the development of potentiometric Cu2+ sensors.

2.
Sci Rep ; 14(1): 5405, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443429

RESUMO

The new era of solid contact ion selective electrodes (SC-ISEs) miniaturized design has received an extensive amount of concern. Because it eliminated the requirement for ongoing internal solution composition optimization and created a two-phase system with stronger detection limitations. Herein, the determination of venlafaxine HCl is based on a comparison study between different ion- to electron transduction materials (such as; multiwalled carbon nanotubes (MWCNTs), polyaniline (PANi), and ferrocene) and illustrating their mechanisms in their applied sensors. Their different electrochemical features (such as bulk resistance (Rb**), double-layer capacitance (Cdl), geometric capacitance (Cg), and specific capacitance (Cp)) were evaluated and discussed by using the Electrochemical Impedance Spectroscopy (EIS), Chronopotentiometry (CP), and Cyclic Voltammetry (CV) experiments. The results indicated that each transducer's influence on the proposed sensor's electrochemical characteristics is determined by their unique chemical and physical properties. The electrochemical features vary for different solid contact materials used in transduction mechanisms. The results confirm that the MWCNT sensor revealed the best electrochemical behavior with the potentiometric response of a near-Nernestian slope of 56.1 ± 0.8 mV/decade with detection limits of 3.8 × 10-6 mol/L (r2 = 0.999) and a low potential drift (∆E/∆t) of 34.6 µV/s. Also, the selectivity study was performed in the presence of different interfering species either in single or complex matrices. This demonstrates excellent selectivity, stability, conductivity, and reliability as a VEN-TPB ion pair sensor for accurately measuring VEN in its various formulations. The proposed method was compared to HPLC reported technique and confirmed no significant difference between them. So, the proposed sensors fulfill their solutions' demand features for VEN appraisal.

3.
Small ; : e2311802, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258398

RESUMO

Conductive polymers are recognized as ideal candidates for the development of noninvasive and wearable sensors for real-time monitoring of potassium ions (K+ ) in sweat to ensure the health of life. However, the low ion-to-electron transduction efficiency and limited active surface area hamper the development of high-performance sensors for low-concentration K+ detection in the sweat. Herein, a wearable K+ sensor is developed by tailoring the nanostructure of polypyrrole (PPy), serving as an ion-to-electron transduction layer, for accurately and stably tracing the K+ fluctuation in human sweat. The PPy nanostructures can be tailored from nanospheres to nanofibers by controlling the supramolecular assembly process during PPy polymerization. Resultantly, the ion-to-electron transduction efficiency (17-fold increase in conductivity) and active surface area (1.3-fold enhancement) are significantly enhanced, accompanied by minimized water layer formation. The optimal PPy nanofibers-based K+ sensor achieved a high sensitivity of 62 mV decade-1 , good selectivity, and solid stability. After being integrated with a temperature sensor, the manufactured wearable sensor realized accurate monitoring of K+ fluctuation in the human sweat.

4.
Anal Chim Acta ; 1287: 342046, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38182362

RESUMO

Solid-contact ion-selective electrodes (SC-ISEs) feature miniaturization and integration that have gained extensive attention in non-invasive wearable sweat electrolyte sensors. The state-of-the-art wearable SC-ISEs mainly use polyethylene terephthalate, gold and carbon nanotube fibers as flexible substrates but suffer from uncomfortableness, high cost and biotoxicity. Herein, we report carbon fiber-based SC-ISEs to construct a four-channel wearable potentiometric sensor for sweat electrolytes monitoring (Na+/K+/pH/Cl-). The carbon fibers were extracted from commercial cloth, of which the starting point is addressing the cost and reproducibility issues for flexible SC-ISEs. The bare carbon fiber electrodes exhibited reversible voltammetric and stable impedance performances. Further fabricated SC-ISEs based on corresponding ion-selective membranes disclosed Nernstian sensitivity and anti-interface ability toward both ions and organic species in sweat. Significantly, these carbon fiber-based SC-ISEs revealed high reproducibility of standard potentials between normal and bending states. Finally, a textile-based sensor was integrated with a solid-contact reference electrode, which realized on-body sweat electrolytes analysis. The results displayed high accuracy compared with ex-situ tests by ion chromatography. This work highlights carbon fiber-based multichannel wearable potentiometric ion sensors with low cost, biocompatibility and reproducibility.

5.
Talanta ; 269: 125408, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38043344

RESUMO

Application of neutral ionophore based ion-selective sensors requires presence of ion-exchanger in the receptor phase, silently assuming that it is not only soluble but also dissociates to ions in the applied plasticizer. Although for typically applied ion-selective membrane constituents (plasticizers - ion-exchanger pairs) dissociation of ion-exchangers to ions is proven by theoretical (or close to) performance of resulting sensors, search for alternative plasticizers or ion-exchangers requires a method allowing estimation of the match of properties of involved compounds. In this work we propose a simple optical approach allowing estimation of ion-exchanger interactions with plasticizer. The results were confirmed by conductivity studies of model plasticizers solutions. The estimated dissociation constants of model ion-exchangers in plasticizers used are in excellent agreement with the results of optical studies. It was shown that solubility coupled with poor dissociation to ions of ion-exchanger affects performance of the resulting ion-selective membrane. Rational choice of properties of ion-exchanger and plasticizer allows finding a perfect match of the two, that results in improvements in performance of sensors (e.g. detection limits). As model sensors potassium and sodium ion-selective electrodes with poly(vinyl chloride) (PVC) based membranes, plasticized with classical plasticizer bis(2-ethylhexyl sebacate) or biodegradable alternative acetyl tributyl citrate, were prepared and studied using selected ion-exchangers.

6.
J Nutr ; 153(12): 3458-3471, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844840

RESUMO

BACKGROUND: There is a lack of consensus on a reference range for ionized magnesium (iMg2+) in blood as a measure of the status of circulating iMg2+ for the screening of populations. OBJECTIVES: We estimated the reference range of iMg2+ levels for healthy adult populations and the ranges for populations with cardiovascular disease (CVD), type 2 diabetes, hypertension, and renal disease. We also estimated 95% ranges for circulating magnesium (Mg) in healthy and those with cardiometabolic diseases. METHODS: We searched Ovid MEDLINE, Cochrane Central Register of Controlled Trials, and Embase through 24 July, 2020 to identify articles. We included English, peer-reviewed, randomized controlled trials, prospective and retrospective cohort studies, case-control studies, and cross-sectional studies that measured iMg2+ in blood or circulating Mg at baseline. The protocol was registered on PROSPERO (CRD42020216100). Estimated ranges were calculated by employing a frequentist random-effects model using extracted (or calculated) means and SDs from each included study. We determined the 95% confidence interval of the pooled mean. RESULTS: A total of 95 articles were included with 53 studies having data for healthy participants and 42 studies having data for participants with cardiometabolic diseases. The estimated reference range for iMg2+ for healthy populations was 0.40-0.68 mmol/L, 0.38-0.64 mmol/L for CVD, 0.34-0.66 mmol/L for type 2 diabetes, 0.39-1.04 mmol/L for hypertension, and 0.40-0.76 mmol/L for renal disease. For circulating Mg, the estimated range was 0.72-1.0 mmol/L for healthy adults, 0.56-1.05 mmol/L for CVD, 0.58-1.14 mmol/L for type 2 diabetes, 0.60-1.08 mmol/L for hypertension, and 0.59-1.26 mmol/L for renal disease. CONCLUSIONS: Estimated reference ranges for cardiometabolic disease states for both iMg2+ and circulating Mg were broad and overlapped with the estimated range for healthy populations (0.40-0.68 mmol/L). Further studies should evaluate whether iMg2+ can be used as a biomarker of cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipertensão , Adulto , Humanos , Magnésio , Valores de Referência , Estudos Prospectivos , Estudos Transversais , Estudos Retrospectivos
7.
ACS Sens ; 8(8): 3225-3239, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37530141

RESUMO

We report here a small library of a new type of acyclic squaramide receptors (L1-L5) as selective ionophores for the detection of ketoprofen and naproxen anions (KF- and NS-, respectively) in aqueous media. 1H NMR binding studies show a high affinity of these squaramide receptors toward KF- and NS-, suggesting the formation of H-bonds between the two guests and the receptors through indole and -NH groups. Compounds L1-L5 have been tested as ionophores for the detection of KF- and NS- inside solvent PVC-based polymeric membranes. The optimal membrane compositions were established through the careful variation of the ligand/tridodecylmethylammonium chloride (TDMACl) anion-exchanger ratio. All of the tested acyclic squaramide receptors L1-L5 have high affinity toward KF- and NS- and anti-Hofmeister selectivity, with L4 and L5 showing the highest sensitivity and selectivity to NS-. The utility of the developed sensors for a high precision detection of KF- in pharmaceutical compositions with low relative errors of analysis (RSD, 0.99-1.4%) and recoveries, R%, in the range 95.1-111.8% has been demonstrated. Additionally, the chemometric approach has been involved to effectively discriminate between the structurally very similar KF- and NS-, and the possibility of detecting these analytes at concentrations as low as 0.07 µM with R2 of 0.947 and at 0.15 µM with R2 of 0.919 for NS- and KF-, respectively, was shown.


Assuntos
Quinina , Ionóforos/química , Ânions/análise
8.
Sensors (Basel) ; 23(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447689

RESUMO

Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.


Assuntos
Eletrodos Seletivos de Íons , Polímeros , Eletrodos , Polímeros/química , Óxidos , Potenciometria , Carbono/química
9.
Molecules ; 28(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37513374

RESUMO

As one of the key components of solid-contact ion-selective electrodes (SC-ISEs), the SC layer plays a crucial role in electrode performance. Carbon materials, known for their efficient ion-electron signal conversion, chemical stability, and low cost, are considered ideal materials for solid-state transducing layers. In this review, the application of different types of carbon materials in SC-ISEs (from 2007 to 2023) has been comprehensively summarized and discussed. Representative carbon-based materials for the fabrication of SC-ISEs have been systematically outlined, and the influence of the structural characteristics of carbon materials on achieving excellent performance has been emphasized. Finally, the persistent challenges and potential opportunities are also highlighted and discussed, aiming to inspire the design and fabrication of next-generation SC-ISEs with multifunctional composite carbon materials in the future.

10.
Angew Chem Int Ed Engl ; 62(28): e202304674, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37166178

RESUMO

The use of solid-contact ion-selective electrodes (ISEs) is of interest to many clinical, environmental, and industrial applications. However, upon extended exposure to samples and under thermal and mechanical stress, adhesion between these membranes and underlying substrates often weakens gradually. Eventually, this results in the formation of a water layer at the interface to the underlying electron conductor and in delamination of the membrane from the electrode body, both major limitations to long-term monitoring. To prevent these problems without increasing the complexity of design with a mechanical attachment, we use photo-induced graft polymerization to simultaneously attach ionophore-doped crosslinked poly(decyl methacrylate) sensing membranes covalently both to a high surface area carbon as ion-to-electron transducer and to inert polymeric electrode body materials (i.e., polypropylene and poly(ethylene-co-tetrafluoroethylene)). The sensors provide high reproducibility (standard deviation of E0 of 0.2 mV), long-term stability (potential drift 7 µV h-1 over 260 h), and resistance to sterilization in an autoclave (121 °C, 2.0 atm for 30 min). For this work, a covalently attached H+ selective ionophore was used to prepare pH sensors with advantages over conventional pH glass electrodes, but similar use of other ionophores makes this approach suitable to the fabrication of ISEs for a variety of analytes.

11.
Talanta ; 262: 124623, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244238

RESUMO

Here, we propose a fast and sensitive coulometric signal transduction method for ion-selective electrodes (ISEs) by utilizing a two-compartment cell. A potassium ion-selective electrode (K+-ISE) was connected as reference electrode (RE) and placed in the sample compartment. A glassy carbon (GC) electrode coated with poly(3,4-ethylenedioxythiophene) (GC/PEDOT), or reduced graphene oxide (GC/RGO), was connected as working electrode (WE) and placed in the detection compartment together with a counter electrode (CE). The two compartments were connected with an Ag/AgCl wire. The measured cumulated charge was amplified by increasing the capacitance of the WE. The observed slope of the cumulated charge with respect to the change of the logarithm of the K+ ion activity was linearly proportional to the capacitance of the GC/PEDOT and GC/RGO, estimated from impedance spectra. Furthermore, the sensitivity of the coulometric signal transduction using a commercial K+-ISE with internal filling solution as RE and GC/RGO as WE allowed to decrease the response time while still being able to detect a 0.2% change in K+ concentration. The coulometric method utilizing a two-compartment cell was found to be feasible for the determination of K+ concentrations in serum. The advantage of this two-compartment approach, compared to the coulometric transduction described earlier, was that no current passed through the K+-ISE that was connected as RE. Therefore, current-induced polarization of the K+-ISE was avoided. Furthermore, since the GCE/PEDOT and GCE/RGO (used as WE) had a low impedance, the response time of the coulometric response decreased from minutes to seconds.

12.
Scand J Clin Lab Invest ; 83(4): 212-218, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37114525

RESUMO

Paraproteins are a potential source of error for electrolyte analyses. The exclusion effect itself causes a discrepancy between direct and indirect ion selective electrode assays (dISE and iISE, respectively). We tested the applicability of different pretreatment methods and the difference of dISE and iISE with paraprotein-rich samples. We analysed chloride (Cl-), potassium (K+), and sodium (Na+) on 46 samples with paraproteins up to 73 g/L. We compared pretreatment methods of preheating, precipitation, and filtration to the native sample. All induced a statistically significant difference (p-value <0.05). Clinically significant difference was induced by precipitation for all analytes, and filtration for Cl- and Na+, but for none by preheating. The difference in electrolyte measurements with either dISE or iISE on native samples was explained by total protein concentration (TP). There was a statistically significant difference in all electrolyte measurements. On average, there was a clinically significant difference in Na + but not in Cl- and K + measurements. Paraprotein concentration (PP) or heavy chain class did not induce a statistically significant effect. The regression analysis and comparison to the theoretical exclusion effect supported the conclusion that TP is the only explanatory factor in the difference between dISE and iISE. We conclude that preheating is a suitable pretreatment method for all the studied analytes. Precipitation is not valid for any of them, and filtration can be considered only for K+. Because the difference between dISE and iISE was explained by the exclusion effect caused by TP, dISE is the more suitable method to analyse paraprotein-rich samples.


Assuntos
Eletrólitos , Paraproteínas , Humanos , Paraproteínas/análise , Sódio , Potássio
13.
BMC Chem ; 17(1): 30, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016406

RESUMO

The objective of this study is to fabricate solid-contact ion selective electrodes (SC-ISEs) that have long term stable potential. Various conducting polymers such as polyaniline and its derivatives have been successfully employed to improve the potential stability in SC-ISEs. Recently, the role of hydrophobicity at the interface between the conducting polymer solid contact and the ion sensing membrane has been investigated and figured out that the hydrophobic interfaces preclude water layer formation that deteriorate the SC-ISEs potential stability and reproducibility. In this work, a hydrophobic polyaniline derivative was fabricated on the surface of a glassy carbon electrode by electropolymerization of perfluorinated aniline monomers in acidic solution. The electropolymerized hydrophobic polymer was characterized by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The fabricated electrode was employed for determination of midazolam-a model drug-in pharmaceutical formulation without prior extraction. The SC-ISEs performance was optimized, and the potential drift was compared to control SC-ISEs, the SC-ISE linear range was 1 × 10-6-1 × 10-2 M, LOD was estimated to be 9.0 × 10-7 M, and potential drift was reduced to 100 µV/h.

14.
Membranes (Basel) ; 13(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37103803

RESUMO

The level of hydrogen ions in sweat is one of the most important physiological indexes for the health state of the human body. As a type of two-dimensional (2D) material, MXene has the advantages of superior electrical conductivity, a large surface area, and rich functional groups on the surface. Herein, we report a type of Ti3C2Tx-based potentiometric pH sensor for wearable sweat pH analysis. The Ti3C2Tx was prepared by two etching methods, including a mild LiF/HCl mixture and HF solution, which was directly used as the pH-sensitive materials. Both etched Ti3C2Tx showed a typical lamellar structure and exhibited enhanced potentiometric pH responses compared with a pristine precursor of Ti3AlC2. The HF-Ti3C2Tx disclosed the sensitivities of -43.51 ± 0.53 mV pH-1 (pH 1-11) and -42.73 ± 0.61 mV pH-1 (pH 11-1). A series of electrochemical tests demonstrated that HF-Ti3C2Tx exhibited better analytical performances, including sensitivity, selectivity, and reversibility, owing to deep etching. The HF-Ti3C2Tx was thus further fabricated as a flexible potentiometric pH sensor by virtue of its 2D characteristic. Upon integrating with a solid-contact Ag/AgCl reference electrode, the flexible sensor realized real-time monitoring of pH level in human sweat. The result disclosed a relatively stable pH value of ~6.5 after perspiration, which was consistent with the ex situ sweat pH test. This work offers a type of MXene-based potentiometric pH sensor for wearable sweat pH monitoring.

15.
Artigo em Inglês | MEDLINE | ID: mdl-36916026

RESUMO

Maintaining the concentrations of various ions in body fluids is critical to all living organisms. In this contribution, we designed a flexible microneedle patch coupled electrode array (MNP-EA) for the in situ multiplexed detection of ion species (Na+, K+, Ca2+, and H+) in tissue interstitial fluid (ISF). The microneedles (MNs) are mechanically robust for skin or cuticle penetration (0.21 N/needle) and highly swellable to quickly extract sufficient ISF onto the ion-selective electrochemical electrodes (∼6.87 µL/needle in 5 min). The potentiometric sensor can simultaneously detect these ion species with nearly Nernstian response in the ranges wider enough for diagnosis purposes (Na+: 0.75-200 mM, K+: 1-128 mM, Ca2+: 0.25-4.25 mM, pH: 5.5-8.5). The in vivo experiments on mice, humans, and plants demonstrate the feasibility of MNP-EA for timely and convenient diagnosis of ion imbalances with minimal invasiveness. This transdermal sensing platform shall be instrumental to home-based diagnosis and health monitoring of chronic diseases and is also promising for smart agriculture and the study of plant biology.

16.
BMC Chem ; 17(1): 27, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966337

RESUMO

INTRODUCTION: Clomipramine is a tricyclic antidepressant acting as a serotonin reuptake inhibitor. Its maximum plasma concentration (Cmax) is 13-310 ng/mL, the therapeutic range is 220-500 ng/mL and its toxic effect appears in doses above 900 ng/mL. OBJECTIVES: The fabrication of eco-friendly solid-contact ion-selective electrodes to evaluate the concentration of Clomipramine in different matrices based on disposable screen-printed carbon electrode. METHODS: Disposable screen-printed carbon electrode was utilized as a substrate to fabricate the proposed sensors. The sensors were optimized to determine Clomipramine using calix[4]arene as an ionophore into PVC polymeric membrane to enhance selectivity towards the target analyte. The solid-contact sensor potential stability was improved by the incorporation of graphene nanoparticles transducer layer. RESULTS: The sensors were assessed as per the IUPAC recommendations. The linearity range was 1 × 10- 2 to 1 × 10- 5.3 M. The sensors were successfully applied to determine CLM in the pharmaceutical formulation. Furthermore, the ion selective electrodes were applied for Clompiramine assay in spiked plasma for the purpose of Point-of-Care testing to be a diagnostic tool for therapeutic monitoring of the cited central nervous system agent. The findings were statistically compared to the reported method showing no statistically significant difference. CONCLUSION: This work was concerned with developing a green analytical method for the determination of Clomipramine. The proposed SC-ISE was mixed with graphene nanocomposite transducer interlayer. The graphene layer succeeded in preventing the formation of an aqueous layer so resulted in a stable, reproducible standard potential besides the rapid response time.

17.
Mikrochim Acta ; 190(1): 43, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36595104

RESUMO

Nitrite is an important food additive for cured meats; however, high nitrite levels pose adverse health effects to humans. Hence, monitoring nitrite concentration is critical to comply with limits imposed by regulatory agencies. Laser-induced graphene (LIG) has proven to be a scalable manufacturing alternative to produce high-performance electrochemical transducers for sensors. Herein, we expand upon initial LIG studies by fabricating hydrophilic and hydrophobic LIG that are subsequently converted into ion-selective sensors to monitor nitrite in food samples with comparable performance to the standard photometric method (Griess method). The hydrophobic LIG resulted in an ion-selective electrode with improved potential stability due partly to a decrease in the water layer between the electrode and the nitrite poly(vinyl) chloride-based ion-selective membrane. These resultant nitrite ion-selective sensors displayed Nernstian response behavior with a sensitivity of 59.5 mV dec-1, a detection limit of 0.3 ± 0.1 mg L-1 (mean ± standard deviation), and a broad linear sensing range from 10-5 to 10-1 M, which was significantly larger than currently published nitrite methods. Nitrite levels were determined directly in food extract samples of sausage, ham, and bacon for 5 min. These sensor metrics are significant as regulatory agencies limit nitrite levels up to 200 mg L-1 in finished products to reduce the potential formation of nitrosamine (carcinogenic compound). These results demonstrate the versatility of LIG as a platform for ion-selective-LIG sensors and simple, efficient, and scalable electrochemical sensing in general while demonstrating a promising alternative to monitor nitrite levels in food products ensuring regulatory compliance.


Assuntos
Grafite , Eletrodos Seletivos de Íons , Humanos , Grafite/química , Nitritos , Água , Lasers
18.
Talanta ; 251: 123797, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35970122

RESUMO

In situ growth of quasi-superhydrophobic porous NiCo2S4 nanosheet arrays with a one-step electrodeposition method was provided. A calcium ion-selective electrodes (Ca2+-ISE) was subsequently constructed by using the prepared NiCo2S4 as a solid contact layer. The proposed Ca2+-ISE exhibits a good Nernstian slope of 30.7 ± 0.3 mV/dec and a detection limit of 1.6 × 10-7 M. Due to the large redox capacitance of 1.8 mF, the Ca2+-ISE based on NiCo2S4 nanosheet arrays shows a high potential stability of 1.9 ± 0.5 µV/h over 90 h. Excellent reproducibilities for the NiCo2S4-based Ca2+-ISEs can be obtained with the single batch and batch-to-batch E° standard deviations of 0.3 (n = 6) and 0.7 mV (n = 5), respectively. The NiCo2S4 nanosheet arrays have a large contact angle of 148 ± 1.4°, which effectively suppresses the formation of a water layer at the sensing membrane/NiCo2S4 interface.


Assuntos
Cálcio , Eletrodos Seletivos de Íons , Polímeros/química , Água/química
19.
Bioelectrochemistry ; 150: 108352, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36563456

RESUMO

Solid-contact ion-selective electrodes (SCISEs) emerged as the best electrode embodiment for miniaturized, wearable and disposable sensors for ion/electrolyte measurements in body fluids. The commercialization of inexpensive single-use "calibration-free" electrodes requires large scale manufacturing of electrodes with reproducible calibration parameters, e.g. E0. This is perhaps the most important shortcoming of SCISEs, beside the many advantages over their conventional liquid-contact counterparts. However, adjusting the E0 value for optimal potential stability is challenging for all state-of-the-art solid-contact materials, which may combine several types of transducing mechanism (e.g. capacitive and redox materials or their combination) for enhanced potential stability and analytical performance. Therefore, here we introduce for the first time the galvanostatic intermittent titration technique (GITT) to determine the best preadjusment potential. The proof of concept is shown for a novel type of solid-contact based on the copolymerization of 3,4-ethylenedioxythiophene with perfluorinated alkyl side chain (EDOTF) and (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl modified 3,4-ethylenedioxythiophene (EDOT-TEMPO). Such materials that are compliant with local electrodeposition and provide multiple functionalities, i.e. high hydrophobicity by the perfluorinated alkyl side chain, electron-to-ion transduction by the conducting polymer (EDOT) backbone and the confinement of well-defined redox couple (TEMPO), are expected to prevail as solid-contacts.


Assuntos
Eletrodos Seletivos de Íons , Polímeros , Eletrodos , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Elétrons
20.
Front Plant Sci ; 14: 1301490, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164248

RESUMO

The maintenance of ion balance in closed hydroponic solutions is essential to improve the crop quality and recycling efficiency of nutrient solutions. However, the absence of robust ion sensors for key ions such as P and Mg and the coupling of ions in fertilizer salts render it difficult to effectively manage ion-specific nutrient solutions. Although ion-specific dosing algorithms have been established, their effectiveness has been inadequately explored. In this study, a decision-tree-based dosing algorithm was developed to calculate the optimal volumes of individual nutrient stock solutions to be supplied for five major nutrient ions, i.e., NO3, K, Ca, P, and Mg, based on the concentrations of NO3, K, and Ca and remaining volume of the recycled nutrient solution. In the performance assessment based on five nutrient solution samples encompassing the typical concentration ranges for leafy vegetable cultivation, the ion-selective electrode array demonstrated feasible accuracies, with root mean square errors of 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. In a five-step replenishment test involving varying target concentrations and nutrient solution volumes, the system formulated nutrient solutions according to the specified targets, exhibiting average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7% for the Ca, K, and NO3 concentrations and volume of the nutrient solution, respectively. Furthermore, the decision tree method helped reduce the total fertilizer injections and carbon emissions by 12.8% and 20.6% in the stepwise test, respectively. The findings demonstrate that the decision-tree-based dosing algorithm not only enables more efficient reuse of nutrient solution compared to the existing simplex method but also confirms the potential for reducing carbon emissions, indicating the possibility of sustainable agricultural development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...